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Settings things up

Before we proceed, we need to install the powerly package and make it available in our R
session.

@ Tip

You can find out more information about powerly at powerly.dev. Make sure to keep an
eye on the website for updates and new features.

# Install "“powerly .
install.packages("powerly")

Now, we can go ahead and load the package into our session.

# Load “powerly™.
library(powerly)


/presenters/mihai-constantin.md
https://powerly.dev

@ Tip

Like always, it is a good idea to first check what packages you have installed before
proceeding. Nevertheless, the command above will not reinstall packages that are already
installed and up-to-date, i.e., unless we force this behavior.

Description

In this tutorial we are going to get familiar with the workflow of running a sample size analysis
using powerly. While we will not use a time series model for the analysis (i.e., still work in
progress ), we use an equally interesting and challenging example, i.e., a reqularized network
model. More specifically, we will learn how to run a sample size analysis for a Gaussian
Graphical Model (GGM) estimated using the Least Absolute Shrinkage and Selection Operator
(LASSO; Friedman et al., 2008) and the FEzxtended Bayesian Information Criterion (EBIC;
Foygel & Drton, 2010). If you are curios to learn more about this methodology, you can check
out the paper by Epskamp & Fried (2018).

Selecting the true model

Let’s start by selecting the network model that we will use as true model. In this case, our
true model © takes the form a a p X p matrix of edge weights 6,;, where p is the number of
nodes in the network. We can generate a true model using the generate_model () function
provided by powerly.

@ Tip

Check out the documentation for generate_model() by running ?generate_model, or
by visiting the package website.

1 Note

We may also manually specify our true model matrix ©. However, this is a rather com-
plicated task, since, in this case, © is a matrix of partial correlation coefficients that
represents a complex interplay between the architecture of the network and the strength
of the relationships between the nodes. For this reason, it is often more convenient to
generate a true model using the generate_model () function based on some hyperparam-
eters, such as the number of nodes, the edge density, and the proportion of positive edges
in the network.

Suppose we are interested in a GGM true model consisting of 10 nodes with an edge density
of 0.4, and a proportion of positive edges of 0.9.


https://powerly.dev/reference/function/generate-model.html

i Note

We may also set a seed to ensure that we all use the same true model.

# Set the seed.
set.seed(20031993)

# To get a matrix of edge weights.
true_model <- generate_model(
type = "ggm",
nodes = 10,
density = .4,
positive = .9

)

Let’s continue by plotting our network to get a better idea of what it looks like. For this we
can use the qgraph package (Epskamp et al., 2012).

@ Tip

Note that you do not need to install ggraph since it is already a dependency of powerly.
You can simply access its exported functions by using the qgraph:: prefix.

# Plot the true model.
ggraph: :qgraph(
true_model,
layout = "spring",
theme = "colorblind"



Figure 1: The GGM true model.

Specifying the performance measure and the statistic

As discussed in the lecture (i.e., Slides > Sample size planning for intensive
longitudinal designs), the choice of performance measure should be driven by the research
question. For our example, let’s suppose we are interested in correctly recovering the network
structure. This implies, that we may be interested in sensitivity, as the proportion of edges in
the true network structure that were correctly estimated to be non-zero (i.e., present), which
is defined as:

TP

EN=_——
> TP + FN’

where TP represents the true positive rate, and FN the false negatives. As for the target value
of the performance measure, let’s suppose we are interested in a SEN of 0.6.

Finally, we need to specify the statistic, which is used to determined how we want to observe
the performance measure. More specifically, suppose we are interested in obtaining a sample
size that will allow us to detect a SEN of 0.6 with a probability of 0.8. In other words, if we
are are to collect, say 100 data sets with the optimal sample size, we want to be able to detect
a SEN of 0.6 in at least 80 of them.

We can specify the performance measure and the statistic in the powerly function using the
measure and statistic arguments, respectively. And their corresponding target values using
the measure_value and statistic_value arguments.



@ Tip

Check out the documentation of the powerly function for a detailed description of all
the arguments. You can also use the ?powerly command in the R console to open the
documentation.

Running the sample size analysis

At this point, we have a good idea about the true model that we want to recover, the per-
formance measure that we want to use, and the statistic that we want to use to observe the
performance measure. We can now run the sample size analysis.

# Run the sample size analysis.
results <- powerly(
range_lower = 300,
range_upper = 1000,
samples = 30,
replications = 60,

measure = "sen",
statistic = "power",
measure_value = .6,
statistic_value = .8,

model = "ggm",

model matrix = true_model,
cores = 9,

verbose = TRUE

Method run completed (4.4468 sec):
- converged: yes
- iteratiomns: 2
- recommendation: 525

Check the results

To get the information about the results, we can simply use the plot method and indicate the
method step that we want to investigate.

For Step 1 of the method.


https://powerly.dev/reference/function/powerly.html

# Plot Step 1.

1

plot(results, step
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Figure 2: Step 1 results.

For Step 2 of the method.

# Plot Step 2.

= 2)

plot(results, step
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Figure 3: Step 2 results.

For Step 3 of the method.

Arguably, the most important step of the method is Step 3, which is where we can see the

actual optimal sample recommendation.

# Plot Step 3.
plot(results, step = 3)
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Figure 4: Step 3 results.

Additionally, we can also use the summary method to get a summary of the results.

# Get a summary of the results.
summary (results)

Method run completed (4.4468 sec):
- converged: yes

- iterations: 2
- recommendation: 2.5% = 509 | 50% = 525 | 97.5% = 538

Validating the recommendation

It also good practice to validate the optimal sample size recommendation using the validate
function by passing in the output obtained from the powerly function, followed by plotting
the validation results.


https://powerly.dev/reference/function/validate.html
https://powerly.dev/reference/function/validate.html
https://powerly.dev/reference/function/powerly.html

# Run validation.

validation <- validate(
method = results,
replications = 3000,
cores = 9

Running the validation...

Validation completed (1.9732 sec):

Count

Probability

- sample: 525
- statistic: 0.8013333
- measure at 20th pert.: 0.647

# Plot validation.
plot(validation)

Performance Measure Distribution | Sample: 525 | Statistic: 0.801
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