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We’ve seen:

• what sample size planning is and why it matters

• two criteria for searching for an optimal sample size

• statistical power

• predictive accuracy

• two approaches for conducting sample size analysis

• analytical

• simulation

• applications to time series models, i.e., 𝐴𝑅(1) and 𝑉𝐴𝑅(1)
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So Far



We’ll talk about:

• the requirements of simulation-based sample size analysis

• …and the questions we can formulate

• a general method to answer sample size questions

• …and obtain recommendation

• a software implementation

• …and an example

• end with a /sample(?=size)/
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So Next
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Simulation Approaches



• the process goes as follows:

• select true parameter values for your model

• generate one dataset with the true parameters

• estimate the model parameters

• test your hypothesis
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Typical Monte Carlo Setup
Simulation Approaches



• the process goes as follows:

• select true parameter values for your model

• generate one dataset with the true parameters

• estimate the model parameters

• test your hypothesis
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Typical Monte Carlo Setup
Simulation Approaches

repeat many times

calculate 
empirical power



We’ve seen this before...
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Typical Monte Carlo Setup
Simulation Approaches



…and even how to code it
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Typical Monte Carlo Setup
Simulation Approaches



We still leverage this this setup…
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Typical Monte Carlo Setup
Simulation Approaches

• but thinking about it more generally

• along two acts



We still leverage this this setup…

What is the required input for running a 
simulation-based power analysis?
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Typical Monte Carlo Setup
Simulation Approaches

• but thinking about it more generally

• along two acts

the first act



We still leverage this this setup…

How can we process the input to get a 
sample size recommendations?
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Typical Monte Carlo Setup
Simulation Approaches

• but thinking about it more generally

• along two acts

the second act



12mihaiconstantin.com8 June 2023

The Requirements

what



For a simulation approach we need to:

• generate or specify true model parameters

• generate data based on the true model parameters

• estimate model parameters from data

• specify a performance measure of interest

• specify a working definition for power
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At a Glance
The Requirements

👀



For a simulation approach we need to:

• generate or specify true model parameters

• generate data based on the true model parameters

• estimate model parameters from data

• specify a performance measure of interest

• specify a working definition for power
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At a Glance
The Requirements

👀

what to be able to perform



For a simulation approach we need to:

• generate or specify true model parameters

• generate data based on the true model parameters

• estimate model parameters from data

• specify a performance measure of interest

• specify a working definition for power
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At a Glance
The Requirements

👀

what to be able to provide



• the set of hypothesized model values used to generate data

• akin to an effect size in typical power analysis

• let’s call it 𝚯
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True Model Parameters
The Requirements



• the observed data

• is a sample from a data generating process with unknown parameters

• the generated data

• is what we get when we pretend to know 

• the data generating process and

• the values of its parameters à our hypothesized 𝚯

• we typically generate datasets of varying sizes for a given 𝚯
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Generated Data
The Requirements



• the observed data

• is a sample from a data generating process with unknown parameters

• the generated data

• is what we get when we pretend to know 

• the data generating process and

• the values of its parameters à our hypothesized 𝚯

• we typically generate datasets of varying sizes for a given 𝚯

18mihaiconstantin.com8 June 2023

Generated Data
The Requirements

What do you think we need the 

generated data for?

👀



• if 𝚯 represents the hypothesized true model parameters

• then "𝚯 holds the estimated model parameters

• estimated from the generated data
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Estimated Model Parameters
The Requirements



• if 𝚯 represents the hypothesized true model parameters

• then "𝚯 holds the estimated model parameters

• estimated from the generated data
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Estimated Model Parameters
The Requirements

What does your intuition say will happen to (𝚯 if the 

generated dataset is very large?

👀



• is a statement about the data generating process

• quantifies the quality of the estimation

• expressed as 𝑓(𝚯, "𝚯) that

• compares the true model parameters in 𝚯 to the estimated model parameters in (𝚯

• and the result of this comparison is dependent on the sample size
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Performance Measure
The Requirements



• is a statement about the data generating process

• expressed as 𝑓(𝚯, "𝚯) that

• compares the true model parameters in 𝚯 to the estimated model parameters in (𝚯

• and the result of this comparison is dependent on the sample size

22mihaiconstantin.com8 June 2023

Performance Measure
The Requirements

How is the performance measure 𝑓(𝚯, (𝚯)

connected to the sample size?

👀



• is a statement about the data generating process

• expressed as 𝑓(𝚯, "𝚯) that

• compares the true model parameters in 𝚯 to the estimated model parameters in (𝚯

• and the result of this comparison is dependent on the sample size

• should be driven by the research question

• has a target value 𝛿
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Performance Measure
The Requirements



• is a definition for the empirical power

• that tells us how we want to observe the performance measure

• e.g., we want a sample size such that 80% of the performance measures reached the target 𝛿
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Statistic of Interest
The Requirements



• is a definition for the empirical power

• that tells us how we want to observe the performance measure

• e.g., we want a sample size such that 80% of the performance measures reached the target 𝛿

• is expressed as a function 𝑔 𝝃 with a target 𝜏

• where

25mihaiconstantin.com8 June 2023

Statistic of Interest
The Requirements

𝝃 =
𝑓 𝚯, &𝚯

⋮
𝑓 𝚯, &𝚯

= 𝑔 𝝃 =
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The Required Input
The Requirements

what
in a nutshell



• true model 𝚯

• it can be many things

27mihaiconstantin.com8 June 2023

The Required Input
The Requirements



Gaussian Graphical Model• true model 𝚯

• it can be many things
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The Required Input
The Requirements
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Vector Autoregressive Model• true model 𝚯

• it can be many things
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The Required Input
The Requirements

(Epskamp, 2017)

https://doi.org/10.1007/s11336-020-09697-3


Structural Equation Model• true model 𝚯

• it can be many things
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The Required Input
The Requirements

(Epskamp et al., 2017)

https://doi.org/10.1007/s11336-017-9557-x


• true model 𝚯

• performance measure 𝑓(𝚯, "𝚯)

• should reflect the research question

31mihaiconstantin.com8 June 2023

The Required Input
The Requirements



Gaussian Graphical Model• true model 𝚯

• performance measure 𝑓(𝚯, "𝚯)

• should reflect the research question

• e.g., suppose we want to recover the 
network structure

• we look at sensitivity à the proportion 
of edges correctly estimated to be 
present
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The Required Input
The Requirements
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• true model 𝚯

• performance measure 𝑓(𝚯, "𝚯)

• a statistic 𝑔 𝝃

• most intuitively defined as a probability, 
but it may take other forms
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The Required Input
The Requirements

𝑓(𝚯, (𝚯) 𝑔 𝝃



• true model 𝚯

• performance measure 𝑓(𝚯, "𝚯)

• a statistic 𝑔 𝝃
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The Required Input
The Requirements



Based on this input, we can ask…
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The Required Input
The Requirements

Given the hypothesized 𝚯, what sample size do we 

need to observe a 𝑓 𝚯, (𝚯 ≥ 𝛿 with probability 𝜏

as defined by 𝑔 𝝃 ?



One could ask…
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The Required Input
The Requirements

I have some idea about a 𝑉𝐴𝑅(1) model I plan to 

fit, and I want to test that all my autoregressive 

coefficients are significant with a power of 0.8. 

How much data do I need?



But in reality…
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The Required Input
The Requirements

I have some idea about a 𝑉𝐴𝑅(1) model I plan to 

fit, and I want to test that all my autoregressive 

coefficients are significant with a power of 0.8.

How much data do I need?



🤝
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Here’s The Deal
The Requirements

you provide us with the 

required input

we provide you with the 

sample size
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The Method

how



We use a three-step Monte Carlo (MC) method that

• iteratively searches for an optimal sample size

• efficiently concentrates the MC simulations on relevant sample sizes

• can extend to other models and performance measures
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At a Glance
The Method

👀(Constantin et al., 2021)

https://psyarxiv.com/j5v7u


The goal of this step is to get a rough understanding of the behavior of
𝑓 𝚯, "𝚯 as a function of sample size.
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Step 1
The Method



• start with a candidate sample size range ℕ𝑠

• select 𝑇 equidistant samples 𝑆 = 𝑠1, … , 𝑠𝑇 ⊆ ℕ𝑠
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Step 1
The Method



• start with a candidate sample size range ℕ𝑠

• select 𝑇 equidistant samples 𝑆 = 𝑠1, … , 𝑠𝑇 ⊆ ℕ𝑠

• for each s𝑡 ∈ 𝑆 perform 𝑅 MC replications as follows:

• generate data with 𝑠𝑡 number of cases using 𝚯

• estimate (𝚯 using the generated data

• compute 𝑓 𝚯, (𝚯
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Step 1
The Method



• obtain 𝑅 × 𝑇 matrix 𝚵, where each entry 
is a performance measure computed for a 
sample size during a MC replication
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Step 1
The Method
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• obtain 𝑅 × 𝑇 matrix 𝚵, where each entry 
is a performance measure computed for a 
sample size during a MC replication

• apply 𝑔(𝝃) over each column of 𝚵 to compute 
the statistic (e.g., power)
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Step 1
The Method
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The goal of this step is to obtain a smooth (power) function and interpolate 
the statistic for all sample sizes in the range ℕ𝑠.
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Step 2
The Method
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Step 2
The Method

• assume monotonicity and use cubic I-Spline
bases with inner knots selected based on 
cross-validation
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Step 2
The Method

• assume monotonicity and use cubic I-Spline
bases with inner knots selected based on 
cross-validation
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The goal of this step is to account for the MC error and provide a measure 
of uncertainty around the interpolated spline.
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Step 3
The Method



• use stratified bootstrapping to 
represent the variability in the 
replicated performance measures 
for each sample size s𝑡 ∈ 𝑆
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Step 3
The Method



• use stratified bootstrapping to 
represent the variability in the 
replicated performance measures 
for each sample size 𝑠𝑡 ∈ 𝑆

• we bootstrap the performance 
measures and, thus, re-
estimating the model is not 
necessary
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Step 3
The Method



• use stratified bootstrapping to 
represent the variability in the 
replicated performance measures 
for each sample size 𝑠𝑡 ∈ 𝑆

• we bootstrap the performance 
measures and, thus, re-
estimating the model is not 
necessary

• fit a new spline to each 
bootstrapped matrix of 
performance measures
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Step 3
The Method
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Step 3
The Method
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Step 3
The Method
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• update candidate range ℕ𝑠 based 
on the confidence bands

• repeat Steps 1 to 3 until range ℕ𝑠
becomes small enough
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Convergence
The Method
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The Implementation



• an R package

powerly.dev
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Open Source
The Implementation

https://powerly.dev/


# Load the library.
library(powerly)
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In Code
The Implementation



# Load the library.
library(powerly)
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In Code
The Implementation

# Generate a true model.
true_model <- generate_model(

type = "...", 
...

)



# Load the library.
library(powerly)
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In Code
The Implementation

# Generate a true model.
true_model <- generate_model(

type = "...", 
...

)



# Load the library.
library(powerly)

# Run the method.
results <- powerly(

range_lower = 300,
range_upper = 1000,
samples = 30,
replications = 20,
measure = ”...",
statistic = "power",
measure_value = .6,
statistic_value = .8,
model = "...",
model_matrix = true_model

)
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In Code
The Implementation

# Generate a true model.
true_model <- generate_model(

type = "...", 
...

)



# Load the library.
library(powerly)

# Run the method.
results <- powerly(

range_lower = 300,
range_upper = 1000,
samples = 30,
replications = 20,
measure = ”...",
statistic = "power",
measure_value = .6,
statistic_value = .8,
model = "...",
model_matrix = true_model

)
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In Code
The Implementation

# Generate a true model.
true_model <- generate_model(

type = "...", 
...

)
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Step 1
The Implementation

plot(results, step = 1)
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Step 2
The Implementation

plot(results, step = 2)
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Step 3
The Implementation

plot(results, step = 3)
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Positive Lookahead
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A General Framework

by Marie Mainguy 

http://mariemainguy.com/


• sample sizes tailored to specific research questions

• sample size analysis as an ecosystem

• growing collection of models and performance measures

• developer API for enabling sample size computations

• upcoming tutorial paper where we

• discuss these ideas

• and show how to apply them
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Why?



we aim to make sample size analysis so accessible that 
there is no way around not doing it
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Our Final Frontier

by Marie Mainguy 

http://mariemainguy.com/


samplesize.help
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Workshop Resources

https://samplesize.help/

