A General Approach to Sample Size Analysis

Mihai A. Constantin Noémi N. K. Schuurman Jeroen K. Vermunt

mihai@mihaiconstantin.com

So Far

We've seen:

- what sample size planning is and why it matters
- two criteria for searching for an optimal sample size
 - statistical power
 - predictive accuracy
- two approaches for conducting sample size analysis
 - analytical
 - simulation
- applications to time series models, i.e., AR(1) and VAR(1)

So Next

We'll talk about:

- the requirements of simulation-based sample size analysis
 - ...and the questions we can formulate
- a general method to answer sample size questions
 - ...and obtain recommendation
- a software implementation
 - ...and an example
- end with a / sample (?=size) /

Simulation Approaches

• the process goes as follows:

- select true parameter values for your model
- generate one dataset with the true parameters
- estimate the model parameters
- test your hypothesis

mulation Approaches

- the process goes as follows:
 - select true parameter values for your model
 - generate one dataset with the true parameters
 - estimate the model parameters
 - test your hypothesis

calculate empirical power

We've seen this before...

Steps of the simulation-based approach

- Example: select the number of measurement occasions T to test if the autoregressive effect of PA is positive

Given T, Hypothesis of interest (e.g., $H_0: \beta_1 = 0$ vs. $H_1: \beta_1 > 0$), and α

...and even how to code it

The Monte Carlo simulation function

This function conducts the Monte Carlo simulation for a set of sample sizes (i.e., several different number of observations) and computes the statistical power for a given hypothesis. It takes several arguments as follows:

- vars is the number of variables of the VAR(1) model
- Tobs_list is a list of numbers of repeated measurements (i.e., Tobs)
- delta the intercept matrix
- psi the transition matrix (which contains the auto-regressive and cross-regressive effects)
- sigma the variance-covariance matrix of the innovation
- R is the number of Monte Carlo replicates (e.g., 1000)
- alpha is the Type I error rate (or significance level of a test statistic)

Function to conduct the Monte Carlo power simulation.
mc_power <- function(vars, Tobs_list, delta, psi, sigma, R, alpha) {
 # Prepare simulation storage.
 df_pow <- data.frame()</pre>

For each sample size in the list.
for (i in 1:length(Tobs_list)) {
 # Extract the sample size.
 Tobs <- Tobs_list[i]</pre>

Print the progress.
print(paste0("Power analysis for N = ", Tobs))

For each Monte Carlo replication.
for (r in 1:R) {
 # Generate data.
 data <- sim_VAR_data(vars, Tobs, delta, psi, sigma)</pre>

mulation Approaches

We still leverage this this setup...

- but thinking about it more generally
- along two acts

mulation Approaches

We still leverage this this setup...

- but thinking about it more generally
- along two acts

<u>What</u> is the required input for running a simulation-based power analysis?

mulation Approaches

We still leverage this this setup...

- but thinking about it more generally
- along two acts

<u>**How</u>** can we process the input to get a sample size recommendations?</u>

The Requirements

what

For a simulation approach we need to:

- generate or specify true model parameters
- generate data based on the true model parameters
- estimate model parameters from data
- specify a **performance measure** of interest
- specify a working **definition for power**

For a simulation approach we need to:

- generate or specify true model parameters
- generate data based on the true model parameters
- estimate model parameters from data
- specify a performance measure of interest
- specify a working definition for power

what to be able to perform

For a simulation approach we need to:

- generate or specify true model parameters
- generate data based on the true model parameters
- estimate model parameters from data
- specify a **performance measure** of interest
- specify a working **definition for power**

what to be able to provide

True Model Parameters

ne Requirements

- the set of hypothesized model values used to generate data
- akin to an effect size in typical power analysis
- let's call it Θ

Generated Data

• the observed data

- is a sample from a data generating process with unknown parameters
- the **generated** data
 - is what we get when we pretend to know
 - the data generating process and
 - the values of its parameters \rightarrow our hypothesized Θ
 - we typically generate datasets of varying sizes for a given Θ

Generated Data

- the observed data
 - · is a sample from a data generating process with unknown parameters
- the generated data
 - What do you think we need
 - · the data generating proce
- What do you think we need the generated data for?
- the values of its parameters -> our hypothesized II
- we typically generate datasets of varying sizes for a given 8

Estimated Model Parameters

ne Requirements

- if **O** represents the hypothesized **true model** parameters
- then $\widehat{\Theta}$ holds the **estimated model** parameters
 - estimated from the generated data

Estimated Model Parameters

ne Requirements

- then $\widehat{\Theta}$ holds the estimated model parameters
 - · estimated from the generated data

What does your intuition say will happen to $\widehat{\Theta}$ if the generated dataset is very large?

Performance Measure

ne Requirements

- is a statement about the data generating process
 - quantifies the quality of the estimation
- expressed as $f(\Theta, \widehat{\Theta})$ that
 - compares the true model parameters in Θ to the estimated model parameters in $\widehat{\Theta}$
 - and the result of this comparison is dependent on the sample size

Performance Measure

he Requirements

- · is a statement about the data generating process
- expressed as f (Θ, Θ) that

 - and the result of

How is the performance measure $f(\Theta, \widehat{\Theta})$

connected to the sample size?

Performance Measure

- is a statement about the data generating process
- expressed as $f(\Theta, \widehat{\Theta})$ that
 - compares the true model parameters in Θ to the estimated model parameters in $\widehat{\Theta}$
 - and the result of this comparison is dependent on the sample size
- should be driven by the research question
- has a target value δ

Statistic of Interest

- is a definition for the empirical power
 - that tells us how we want to observe the performance measure
 - e.g., we want a sample size such that 80% of the performance measures reached the target δ

Statistic of Interest

- is a definition for the empirical power
 - that tells us how we want to observe the performance measure
 - e.g., we want a sample size such that 80% of the performance measures reached the target δ
 - is expressed as a function $g(\xi)$ with a target τ
 - where

what in a nutshell

• true model Θ

• it can be many things

ne Requirements

- true model Θ
 - it can be many things

Gaussian Graphical Model

ne Requirements

• true model Θ

• it can be many things

Vector Autoregressive Model

ne Requirements

- true model Θ
 - it can be many things

Structural Equation Model

• true model **O**

- performance measure $f(\Theta, \widehat{\Theta})$
 - should reflect the research question

ne Requirements

- true model **O**
- performance measure $f(\Theta, \widehat{\Theta})$
 - should reflect the research question
 - e.g., suppose we want to recover the network structure
 - we look at sensitivity → the proportion of edges correctly estimated to be present

Gaussian Graphical Model

ne Requirements

- true model **O**
- performance measure $f(\Theta, \widehat{\Theta})$
- a statistic $g(\xi)$
 - most intuitively defined as a probability, but it may take other forms

ne Requirements

- true model Θ
- performance measure $f(\Theta, \widehat{\Theta})$
- a statistic $g(\xi)$

Based on this input, we can ask...

Given the hypothesized Θ , what sample size do we need to observe a $f(\Theta, \widehat{\Theta}) \ge \delta$ with probability τ as defined by $g(\xi)$?

One could ask...

I have some idea about a VAR(1) model I plan to fit, and I want to test that all my autoregressive coefficients are significant with a power of **0.8**. How much data do I need?

But in reality...

I have some idea about a VAR(1) model I plan to fit, and I want to test that all my autoregressive coefficients are significant with a power of 0.8. How much data do I need?

Here's The Deal

ne Requirements

we provide you with the

sample size

The Method

how

At a Glance

We use a three-step Monte Carlo (MC) method that

- iteratively searches for an optimal sample size
- efficiently concentrates the MC simulations on relevant sample sizes
- can extend to other models and performance measures

(Constantin et al., 2021)

The goal of this step is to get a rough understanding of the behavior of $f(\Theta, \widehat{\Theta})$ as a function of sample size.

- start with a candidate sample size range \mathbb{N}_s
- select T equidistant samples $S = \{s_1, \dots, s_T\} \subseteq \mathbb{N}_s$

- start with a candidate sample size range \mathbb{N}_s
- select T equidistant samples $S = \{s_1, \dots, s_T\} \subseteq \mathbb{N}_s$
- for each $s_t \in S$ perform R MC replications as follows:
 - generate data with s_t number of cases using Θ
 - estimate $\widehat{\Theta}$ using the generated data
 - compute $f(\mathbf{\Theta}, \widehat{\mathbf{\Theta}})$

 obtain R × T matrix Ξ, where each entry is a performance measure computed for a sample size during a MC replication

• 👸 • 8 June 2023

8 June 2023

 obtain R × T matrix E, where each entry is a performance measure computed for a sample size during a MC replication

• apply $g(\boldsymbol{\xi})$ over each column of $\boldsymbol{\Xi}$ to compute the statistic (e.g., power)

The goal of this step is to obtain a smooth (power) function and interpolate the statistic for all sample sizes in the range \mathbb{N}_s .

• assume monotonicity and use cubic *I-Spline* bases with inner knots selected based on cross-validation

 assume monotonicity and use cubic I-Spline bases with inner knots selected based on cross-validation

The goal of this step is to account for the MC error and provide a measure of uncertainty around the interpolated spline.

• use stratified bootstrapping to represent the variability in the replicated performance measures for each sample size $s_t \in S$

- use stratified bootstrapping to represent the variability in the replicated performance measures for each sample size $s_t \in S$
- we bootstrap the performance measures and, thus, reestimating the model is not necessary

- use stratified bootstrapping to represent the variability in the replicated performance measures for each sample size $s_t \in S$
- we bootstrap the performance measures and, thus, reestimating the model is not necessary
- fit a new spline to each bootstrapped matrix of performance measures

- update candidate range \mathbb{N}_s based on the confidence bands
- repeat Steps 1 to 3 until range \mathbb{N}_s becomes small enough

The Implementation


```
# Generate a true model.
true_model <- generate_model(
    type = "...",
    ...
)</pre>
```



```
# Generate a true model.
true_model <- generate_model(
    type = "...",</pre>
```

Run the method. results <- powerly(</pre> range_lower = 300, range_upper = 1000, samples = 30, replications = 20, measure = "...", statistic = "power", measure_value = .6, statistic_value = .8, model = "...", model_matrix = true_model

)


```
# Generate a true model.
true_model <- generate_model(
    type = "...",</pre>
```

range_upper = 1000, measure = "...", measure_value = .6, model = "...", model_matrix = true_model

Monte Carlo Replications (40)

plot(results, step = 3)

Positive Lookahead

A General Framework

00 U) 0

by <u>Marie Maing</u>uy

Why?

- sample sizes tailored to specific research questions
- sample size analysis as an **ecosystem**
 - growing **collection** of models and performance measures
 - developer API for enabling sample size computations
- upcoming tutorial paper where we
 - discuss these ideas
 - and show how to apply them

Our Final Frontier

we aim to make sample size analysis so accessible that there is no way around not doing it

Workshop Resources

samplesize.help

